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This letter is a summary of preliminary experimental studies of 

a number of relaxation processes involving excited vibrational levels of 

the C02 molecule. These studies involve the use of a new technique in 

which infrared fluorescence induced by the application of intense pulses 

of Q-switched 1 0 . 6 ~  laser 

measure of the rate of volume quenching of the first excited asymmetrical 

stretching mode, (Odl), of the C 0 2  molecule. 

a number of widely spaced vibrational levels of this molecule a r e  highly 

coupled through collisions; 

these levels is coupled to the C .  W. power output of the 1 0 . 6 ~  laser os- 

cillation (but not necessarily to the Q-switch power output). The 10. 6p 

oscillation occurs on a transition involving only one pair  of these 

collisionally coupled vibrational levels. The time constant involved in this 

collisional coupling is such that for a few microseconds after application 

of Q-switched radiation, an inversion of population may be obtained 

among these vibrational levels. 

Q-switched laser oscillation at 4. 3p. 

both in  the presence of a D. C. discharge current and without a discharge 

where the steady state level populations are at room temperature. 

is used to obtain an accurate 

W e  have also shown that 

and because of this, the energy stored in 

This has enabled attainment of a new 

The relaxation studies are done 

In this experiment, a short sample tube is placed within the resona- 

tor of a Brewster angle laser system with infrared transmitting windows. 

An additional infrared window is provided on the side of the sample tube, 

which is connected to a gas handling system that allows varying amounts of 

C 0 2  together with other gases to be introduced into the tube. . The sample 
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tube is equipped with a pair of electrodes which allows D. C. discharge 

excitation when desired. The laser discharge tube is much longer i n  length 

than the sample tube, apd in this way, the gain or attenuation of the sample 

tube at the laser frequency is kept a t  a level considerably lower than the 

gain of the laser tube. 

small  perturbation on the performance of the laser system. 

Accordingly, the sample tube introduces only a 

Consider the laser operating in the Q-switch mode on the ( l O o O ) c  

The 0 (00 1) rotation-vibration transition of COz at 10. 6p, (see Fig. 1). 

high intensity Q- switch beam introduces rapid radiative transitions between 

the corresponding levels of the C 0 2  molecules in the sample tube. This 

occurs during a very short time corresponding to the pulse-length of each 

Q-switch pulse and results in sudden changes in level populations of (10OOj  

and (00'1) states. 

their steady state values. 

tored by viewing the infrared spontaneous emission from COz levels 

through the side window of the sample tube. 

infrared monochromator is placed in front of the side window, and the 

output of the monochromator is detected by a fast response infrared 

detector. 

After the pulse, the level populations slowly relax to 

The change in level populations may be moni- 

For  this purpose, a grating 

In th i s  experiment, w e  have studied the fluorescence of nearly 

overlapping spontaneous emission bands arising from transitions within 

the asymmetrical stretch vibrational levels, (00'~- 1) +- (OOOv), (see Fig. 1). 

These bands fall a t  about 2300 cm-l(4. 5p). - The monochromator may be 

tuned in this region to select the emission originating primarily from 

individual ( OOOv) levels. 
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The rate of volume quenching and diffusion of the ( O O o l )  levels was  

studied with the sample tube at room temperature and without a discharge. 

In this case, the steady state level populations are in thermal equilibrium 

at room temperature. The 4 - s w i t c h  laser pulfie suddenly increases the 
0 population of the (00 1) level and results in  a rapid rise in the spontaneous 

emission from this band. The decay of this emission signal back to its 

steady state value is found to be a pure exponential. 

measured rate  of decay of this signal as a function of C 0 2  pressure in  

pure C 0 2 .  

sample tube is responsible for departure from linear dependence at low 

pressure.  (The average diameter of the sample tube w a s  about 1 inch). 

Fig. 2 gives the 

The diffusion of excitation of the (00'1) levels to the w a l l s  of the 

Analysis of the curve in  Fig. 2 gives a rate of volume quenching for the 

( O O o l )  level due to collisions with the ground state C02 molecules. 

is 385/sec/mm corresponding to a cross section of 

The analysis of this curve at  low pressure gives a c ross  section for the 

self diffusion coefficient for diffusion of excitation of the ( O O o l )  state to the 

wall. This is 0. 50cm /sec normalized to one atmosphere. In this latter,  

This 
2 

= (3 .  3+. - 3) x . 

2 

estimate, we have not included the possibility that a collision with the w a l l  

may not necessarily lead to an immediate decay of the excitation of the 

molecular vibration. This effect may readily be studied by repeating the 

experiment with different types of walls for the sample tube. 

the non-cylindrical geometry of the tube, caused by the presence of the 

Furthermore, 

side window, also introduces an uncertainty in the exact value of the diffu- 

sion length. A s  a result, the measured value of the diffusion coefficient is 
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correct to within a factor of two. 

when extended, does not go through the origin. 

radiative decay of the (00'1) level. Wowever, to deduce from this an exact 

value of this radiative lifetime, the effect of self trapping of resonance 

radiation must be included. 

The linear portion of the curve in Fig. 2, 

This is caused by the 

In the above experiment, the decay of the fluorescence signal is 

observed by direct display of the detector output on an oscilloscope. 

signal to noise may be improved considerably by using standard electronic 

circuitry to achieve long integration times. 

possible observations at very low pressures of C02 and detailed studies 

of the effects of various buffer gases on the vibrational relaxation. 

The 

This is expected to make 

Let us now consider relaxation and collisional coupling between various 

levels in  the presence of a D. C. discharge in  the sample tube. 

the densities of the excited vibrational levels are so large that collisions 

between molecules in excited vibrational levels play important roles. 

Because of these collisions, the relaxation of a level depends on the exact 

densities of a number of collisionally coupled levels and hence is a complex 

function of the current through the discharge tube. The collisional coupling 

between the (OOOv) levels may be studied by observing the spontaneous 

emission side light originating from these levels a s  the sample tube is 

subjected to C. W. o r  Q-switch pulses of 10.6~ laser radiation. 

very narrow Q-switch pulse, one finds that, as the population of the (OOol) 

is suddenly changed, those of the higher (OOOv) levels also suffer an 

appreciable change, but with a time delay. 

In this case, 

Using a 

The change of the spontaneous 
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emission signal due to population changes in the (OOOv) levels is roughly 

half as large a s  the steady state spontaneous emission signal in the absence 

of 10. 6p laser radiation. The time deiay in  the spread of excitation among 

these levels is less than ten microseconds. This was measured in  a discharge 

consisting of a mixture of He-N2-C02 and under conditions of near optimum 

gain for the 10.6~ transition. ' This indicates the presence of a large rate 

of upward excitation among the (00'~) levels. 

between adja ,ent (OOOv) vibrational levels is about 2300 cm-l) .  

(Note that the energy spacing 

Such an 

excitation may be accounted for by considering collisions between two 

vibrationally excited molecules causing further excitation of one and de- 

excitation of the other. 

molecules or possiblga C02 and a N2 molecule. 

a collision is small  and the corresponding cross section is expected to be 

large. 

1 

This may occur in  collisions between two C 0 2  

The energy defect in such 

In order to inspect the degree of importance and the consequences of 

the above collisional couplings, it is important to know the relative popula- 

tions of adjacent (OOOv) vibrational levels in the discharge tube. 

this, the intensity profile of the nearly overlapping emission band of the 

(OOOv- 1) C- (OOOv) transition w a s  analyzed in detail. 

the sample discharge tube subjected to 10.6~ C. W. laser  radiation as w e l l  

a s  without the laser  irradiation. 

of adjacent (OOOv) vibrational levels remained the same in both cases. 

To establish 

_I 

This was studied both with 

It was found that the ratio of the population 

Furthermore, thw'ratio was found to be close to unity for a number of low 
I 
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lying (OOOv) levels corresponding to relatively high positive temperature 

among them. This w a s  found to hold for levels up to and including v = 4. 

For la rger  v, the level populations fall drastically. 

ments, it was important to allow for the effect of self trapping of the 

(OOOO) C (OOol) transition). 

presence of tight collisional couplings between the (OOOv) levels have a 

number of important consequences: 

(In these measure- 

This observation, together with that of the 

1. While the unsaturated gain of the 10. 6p transition is determined 

only by the populations of the (10'0) and (OOol) levels, the laser output 

power, which correspmds to saturated gain at the laser transition, is 

determined by the populations ef at least three additional (OOOv) levels. 

Accordingly, the energy stored in the populations of at least four of 

the low lying (OOOv) levels is coupled to the C. W. 1 0 . 6 ~  laser output, 

and each of these levels contributes more or less by the same amount to 

the total 10. 6p laser power. 

2. 

are non-inverted. However, immediately after the application of a 

Q-switch 10.6~ laser pulse, where the population of the (OOO1) level 

is suddenly decreased, an inverted population may be obtained among 

the (OOOv) levels. 

microseconds determined by the relaxation time constant discussed 

above. 

sizable gain at a different frequency. 

laser oscillations induced by Q-switching of the 1 0 . 6 ~  transition. 

The steady state distribution of population among the (OOOv) levels 

This w i l l  occur in a time of the order of a few 

Accordingly, the 10. 6p Q-switch laser pulse "switches" on a 

A search was  made for new 

A 
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strong pulse was  detected at 4. 3p in a He-C02-N2 discharge. 

molecular rotation vibration parameters of the excited (OOOv) levels 

are not accurately known, but the best fit of the measured wavelengths 

to the known molecular parameters suggests a tentative ass ignmnt  

The 

to P( 31) transition between levels ( 00°2), (00'1). 

of t h e  4. 3p pulse follows the mechanism described above. 

i f  the pulse length of the 10.6~ laser oscillation is increased to a value 

in  excess of a few microseconds, the 4. 3p pulse occurs only at its 

onset and its pulse length cannot be extended by any means. 

should be pointed out that the conditions for obtaining optimum output 

power coupling for the 10. 6p pulse a r e  appreciably different than those 

for the 4. 3p pulse. 

output power of the 4. 3p pulse. 

3. 

allowed to oscillate, the population of the higher (OOov) levels a r e  no 

longer coupled to the laser field. 

pulse is generally less than the time constant of the collisional coupling 

between adjacent (OOOv) levels. 

It should be noted that other excited vibrational levels of the C02 

The overall behavior 

For instance, 

Finally, it 

This should be allowed for in obtaining optimum 

In a Q-switch system where the 1 0 . 6 ~  laser transition alone is 

This is because the duration of a 

molecules may also be tightly coupled to the laser  levels. 

studied by observing the influence of 1 0 . 6 ~  Q-switch laser  radiation on the 

infrared emission originating from excited bending modes o r  the symmetrical 

stretching mode. 

These may be 

The induced fluorescence technique used in the above experiments is 
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I 
an  extension of that technique applied earlier in studies of the thermalization 

of a number of closely spaced levels in excited atomic Ne(3). The relaxation 

studies described above give information related to the behavior of individual 

vibrational levels which is not readily obtainable from shock tube studies. 

Furthermore, in a gas discharge, the behavior of the induced fluorescence 

signal may be interpreted, in a manner which is free from additional com- 

plexities generally encountered in  other experimental methods. 

because , in the induced fluorescence techniques, the presence of excitation 

processes which a r e  unaffected by the laser  field do not appear in the final 

measurements. However, i n  an experimental method such a s  afterglow 

emission studies of pulsed discharges, the decay of other sources of excitation 

of molecular levels, for example, cascade transitions from a long lived 

excited electronic state, may lead to ambiguities in the interpretation of the 

observed behavior. , 

This is 
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